Mar 7, 2012

Agriculture

Agriculture (also called farming or husbandry) is the cultivation of animals, plants, fungi, and other life forms for food, fiber, and other products used to sustain life. Agriculture was the key development in the rise of sedentary human civilization, whereby farming of domesticated species created food surpluses that nurtured the development of civilization. The study of agriculture is known as agricultural science. Agriculture generally speaking refers to human activities, although it is also observed in certain species of ant and termite.
The history of agriculture dates back thousands of years, and its development has been driven and defined by greatly different climates, cultures, and technologies. However, all farming generally relies on techniques to expand and maintain the lands suitable for raising domesticated species. For plants, this usually requires some form of irrigation, although there are methods of dryland farming; pastoral herding on rangeland is still the most common means of raising livestock. In the developed world, industrial agriculture based on large-scale monoculture has become the dominant system of modern farming, although there is growing support for sustainable agriculture (e.g. permaculture or organic agriculture). Modern agronomy, plant breeding, pesticides and fertilizers, and technological improvements have sharply increased yields from cultivation, but at the same time have caused widespread ecological damage and negative human health effects.
Selective breeding and modern practices in animal husbandry such as intensive pig farming have similarly increased the output of meat, but have raised concerns about animal cruelty and the health effects of the antibiotics, growth hormones, and other chemicals commonly used in industrial meat production. The major agricultural products can be broadly grouped into foods, fibers, fuels, and raw materials. In the 21st century, plants have been used to grow biofuels, biopharmaceuticals, bioplastics, and pharmaceuticals. Specific foods include cereals, vegetables, fruits, and meat. Fibers include cotton, wool, hemp, silk and flax. Raw materials include lumber and bamboo. Other useful materials are produced by plants, such as resins. Biofuels include methane from biomass, ethanol, and biodiesel. Cut flowers, nursery plants, tropical fish and birds for the pet trade are some of the ornamental products. Regarding food production, the World Bank targets agricultural food production and water management as an increasingly global issue that is fostering an important and growing debate. In 2007, one third of the world's workers were employed in agriculture. The services sector has overtaken agriculture as the economic sector employing the most people worldwide. Despite the size of its workforce, agricultural production accounts for less than five percent of the gross world product (an aggregate of all gross domestic products).

Etymology

 
The word agriculture is the English adaptation of Latin agricultūra, from ager, "a field", and cultūra, "cultivation" in the strict sense of "tillage of the soil". Thus, a literal reading of the word yields "tillage of a field / of fields".

Overview

 
Agriculture has played a key role in the development of human civilization. Until the Industrial Revolution, the vast majority of the human population labored in agriculture. The type of agriculture they developed was typically subsistence agriculture in which farmers raised most of their crops for consumption on farm, and there was only a small portion left over for the payment of taxes, dues, or trade. In subsistence agriculture cropping decisions are made with an eye to what the family needs for food, and to make clothing, and not the world marketplace. Development of agricultural techniques has steadily increased agricultural productivity, and the widespread diffusion of these techniques during a time period is often called an agricultural revolution. A remarkable shift in agricultural practices has occurred over the past century in response to new technologies, and the development of world markets. This also led to technological improvements in agricultural techniques, such as the Haber-Bosch method for synthesizing ammonium nitrate which made the traditional practice of recycling nutrients with crop rotation and animal manure less necessary.
Synthetic nitrogen, along with mined rock phosphate, pesticides and mechanization, have greatly increased crop yields in the early 20th century. Increased supply of grains has led to cheaper livestock as well. Further, global yield increases were experienced later in the 20th century when high-yield varieties of common staple grains such as rice, wheat, and corn (maize) were introduced as a part of the Green Revolution. The Green Revolution exported the technologies (including pesticides and synthetic nitrogen) of the developed world to the developing world. Thomas Malthus famously predicted that the Earth would not be able to support its growing population, but technologies such as the Green Revolution have allowed the world to produce a surplus of food. Many governments have subsidized agriculture for a variety of political and economic reasons. These agricultural subsidies are often linked to the production of certain commodities such as wheat, corn (maize), rice, soybeans, and milk. These subsidies, especially when instituted by developed countries have been noted as protectionist, inefficient, and environmentally damaging. In the past century agriculture has been characterized by enhanced productivity, the use of synthetic fertilizers and pesticides, selective breeding, mechanization, water contamination, and farm subsidies. Proponents of organic farming such as Sir Albert Howard argued in the early 20th century that the overuse of pesticides and synthetic fertilizers damages the long-term fertility of the soil. While this feeling lay dormant for decades, as environmental awareness has increased in the 21st century there has been a movement towards sustainable agriculture by some farmers, consumers, and policymakers. In recent years there has been a backlash against perceived external environmental effects of mainstream agriculture, particularly regarding water pollution, resulting in the organic movement. One of the major forces behind this movement has been the European Union, which first certified organic food in 1991 and began reform of its Common Agricultural Policy (CAP) in 2005 to phase out commodity-linked farm subsidies, also known as decoupling. The growth of organic farming has renewed research in alternative technologies such as integrated pest management and selective breeding. Recent mainstream technological developments include genetically modified food. In late 2007, several factors pushed up the price of grains consumed by humans as well as used to feed poultry and dairy cows and other cattle, causing higher prices of wheat (up 58%), soybean (up 32%), and maize (up 11%) over the year. Food riots took place in several countries across the world. Contributing factors included drought in Australia and elsewhere, increasing demand for grain-fed animal products from the growing middle classes of countries such as China and India, diversion of foodgrain to biofuel production and trade restrictions imposed by several countries. An epidemic of stem rust on wheat caused by race Ug99 is currently spreading across Africa and into Asia and is causing major concern. Approximately 40% of the world's agricultural land is seriously degraded. In Africa, if current trends of soil degradation continue, the continent might be able to feed just 25% of its population by 2025, according to UNU's Ghana-based Institute for Natural Resources in Africa.

History

 
Agricultural practices such as irrigation, crop rotation, fertilizers, and pesticides were developed long ago, but have made great strides in the past century. The history of agriculture has played a major role in human history, as agricultural progress has been a crucial factor in worldwide socio-economic change. Division of labor in agricultural societies made commonplace specializations rarely seen in hunter-gatherer cultures. So, too, are arts such as epic literature and monumental architecture, as well as codified legal systems. When farmers became capable of producing food beyond the needs of their own families, others in their society were freed to devote themselves to projects other than food acquisition. Historians and anthropologists have long argued that the development of agriculture made civilization possible. The total world population probably never exceeded 15 million inhabitants before the invention of agriculture.
 

Prehistoric Origins

 
Forest gardening is thought to be the world's oldest known form of agriculture. Forest gardens originated in prehistoric times along jungle-clad river banks and in the wet foothills of monsoon regions. In the gradual process of a family improving their immediate environment, useful tree and vine species were identified, protected and improved whilst undesirable species were eliminated. Eventually superior foreign species were selected and incorporated into the family's garden.
  

Ancient History

 
The Fertile Crescent of Western Asia, Egypt, and India were sites of the earliest planned sowing and harvesting of plants that had previously been gathered in the wild. Independent development of agriculture occurred in northern and southern China, Africa's Sahel, New Guinea and several regions of the Americas. The eight so-called Neolithic founder crops of agriculture appear: first emmer wheat and einkorn wheat, then hulled barley, peas, lentils, bitter vetch, chick peas and flax. By 7000 BC, small-scale agriculture reached Egypt. From at least 7000 BC the Indian subcontinent saw farming of wheat and barley, as attested by archaeological excavation at Mehrgarh in Balochistan in what is present day Pakistan. By 6000 BC, mid-scale farming was entrenched on the banks of the Nile. This, as irrigation had not yet matured sufficiently. About this time, agriculture was developed independently in the Far East, with rice, rather than wheat, as the primary crop. Chinese and Indonesian farmers went on to domesticate taro and beans including mung, soy and azuki. To complement these new sources of carbohydrates, highly organized net fishing of rivers, lakes and ocean shores in these areas brought in great volumes of essential protein. Collectively, these new methods of farming and fishing inaugurated a human population boom that dwarfed all previous expansions and continues today. By 5000 BC, the Sumerians had developed core agricultural techniques including large-scale intensive cultivation of land, monocropping, organized irrigation, and the use of a specialized labor force, particularly along the waterway now known as the Shatt al-Arab, from its Persian Gulf delta to the confluence of the Tigris and Euphrates. Domestication of wild aurochs and mouflon into cattle and sheep, respectively, ushered in the large-scale use of animals for food/fiber and as beasts of burden. The shepherd joined the farmer as an essential provider for sedentary and seminomadic societies. Maize, manioc, and arrowroot were first domesticated in the Americas as far back as 5200 BC. The potato, tomato, pepper, squash, several varieties of bean, tobacco, and several other plants were also developed in the Americas, as was extensive terracing of steep hillsides in much of Andean South America. The Greeks and Romans built on techniques pioneered by the Sumerians, but made few fundamentally new advances. Southern Greeks struggled with very poor soils, yet managed to become a dominant society for years. The Romans were noted for an emphasis on the cultivation of crops for trade. In the same region, a parallel agricultural revolution occurred, resulting in some of the most important crops grown today. In Mesoamerica wild teosinte was transformed through human selection into the ancestor of modern maize, more than 6000 years ago. It gradually spread across North America and was the major crop of Native Americans at the time of European exploration. Other Mesoamerican crops include hundreds of varieties of squash and beans. Cocoa was also a major crop in domesticated Mexico and Central America. The turkey, one of the most important meat birds, was probably domesticated in Mexico or the U.S. Southwest. In the Andes region of South America the major domesticated crop was potatoes, domesticated perhaps 5000 years ago. Large varieties of beans were domesticated, in South America, as well as animals, including llamas, alpacas, and guinea pigs. Coca, still a major crop, was also domesticated in the Andes. A minor center of domestication, the indigenous people of the Eastern U.S. appear to have domesticated numerous crops. Sunflowers, tobacco, varieties of squash and Chenopodium, as well as crops no longer grown, including marshelder and little barley were domesticated. Other wild foods may have undergone some selective cultivation, including wild rice and maple sugar. The most common varieties of strawberry were domesticated from Eastern North America.
By 3500 BC, the simplest form of the plough was developed, called the ard. Before this period, simple digging sticks or hoes were used. These tools would have also been easier to transport, which was a benefit as people only stayed until the soil's nutrients were depleted. However, through excavations in Mexico it has been found that the continuous cultivating of smaller pieces of land would also have been a sustaining practice. Additional research in central Europe later revealed that agriculture was indeed practiced at this method. For this method, ards were thus much more efficient than digging sticks.
  

Middle Ages

 
The Middle Ages saw significant improvements in the agricultural techniques and technology. There was a steady clearing of woodlands and draining of wetlands for the increase of cropland throughout the period until about the year 1300. Tools such as axes, adzes, and bill-hooks were improved, but most significant was the gradual evolution of the scratch plough from the classical Mediterranean world into the mouldboard plough capable of turning over the heavy souls of northern Europe. The period saw a general move from a two field crop rotation to a three field crop rotation in which one field of three was left fallow every year. Also, there was a general change from small patchworks of fields to one large open field divided into strips owned by various members of a community. The use of watermills was common in the Middle Ages. There was tremendous increase in windmills from the 12th to the 13th century; some tens of thousands were built.
Crops where wheat, rye, barley, and oats. Peas, beans, and vetches became common from the 13th century onward as a fodder crop for animals and also for their nitrogen-fixation fertilizing properties. Crop yields peaked in the 13th century, and according to Bruce Campbell and Mark Overton stayed more or less steady until the 18th century. Though the limitations of Medieval farming were once thought to have provided a ceiling for the population growth in the Middle Ages, recent studies by Campbell and David Stone have shown that the technology of Medieval agriculture was always sufficient for the needs of the people under normal circumstances, and that it was only during exceptionally harsh times, such as the terrible weather of 1315-17, that the needs of the population could not be met.
  

Modern Era

 
After 1492, a global exchange of previously local crops and livestock breeds occurred. Key crops involved in this exchange included the tomato, maize, potato, manioc, cocoa bean and tobacco going from the New World to the Old, and several varieties of wheat, spices, coffee, and sugar cane going from the Old World to the New. The most important animal exportation from the Old World to the New were those of the horse and dog (dogs were already present in the pre-Columbian Americas but not in the numbers and breeds suited to farm work). Although not usually food animals, the horse (including donkeys and ponies) and dog quickly filled essential production roles on western-hemisphere farms. The potato became an important staple crop in northern Europe. Since being introduced by Portuguese in the 16th century, maize and manioc have replaced traditional African crops as the continent's most important staple food crops. By the early 19th century, agricultural techniques, implements, seed stocks and cultivar had so improved that yield per land unit was many times that seen in the Middle Ages. Although there is a vast and interesting history of crop cultivation before the dawn of the 20th century, there is little question that the work of Charles Darwin and Gregor Mendel created the scientific foundation for plant breeding that led to its explosive impact over the past 150 years. With the rapid rise of mechanization in the late 19th century and the 20th century, particularly in the form of the tractor, farming tasks could be done with a speed and on a scale previously impossible. These advances have led to efficiencies enabling certain modern farms in the United States, Argentina, Israel, the United Kingdom Germany, and a few other nations to output volumes of high-quality produce per land unit at what may be the practical limit. The Haber-Bosch method for synthesizing ammonium nitrate represented a major breakthrough and allowed crop yields to overcome previous constraints. In the past century agriculture has been characterized by enhanced productivity, the substitution of synthetic fertilizers and pesticides for labor, water pollution, and farm subsidies. In recent years there has been a backlash against the external environmental effects of conventional agriculture, resulting in the organic movement. The cereals rice, corn, and wheat provide 60% of human food supply. Between 1700 and 1980, "the total area of cultivated land worldwide increased 466%" and yields increased dramatically, particularly because of selectively bred high-yielding varieties, fertilizers, pesticides, irrigation, and machinery. For example, irrigation increased corn yields in eastern Colorado by 400 to 500% from 1940 to 1997. However, concerns have been raised over the sustainability of intensive agriculture. Intensive agriculture has become associated with decreased soil quality in India and Asia, and there has been increased concern over the effects of fertilizers and pesticides on the environment, particularly as population increases and food demand expands. The monocultures typically used in intensive agriculture increase the number of pests, which are controlled through pesticides. Integrated pest management (IPM), which "has been promoted for decades and has had some notable successes" has not significantly affected the use of pesticides because policies encourage the use of pesticides and IPM is knowledge-intensive. Although the "Green Revolution" significantly increased rice yields in Asia, yield increases have not occurred in the past 15–20 years. The genetic "yield potential" has increased for wheat, but the yield potential for rice has not increased since 1966, and the yield potential for maize has "barely increased in 35 years". It takes a decade or two for herbicide-resistant weeds to emerge, and insects become resistant to insecticides within about a decade. Crop rotation helps to prevent resistances. Agricultural exploration expeditions, since the late 19th century, have been mounted to find new species and new agricultural practices in different areas of the world. Two early examples of expeditions include Frank N. Meyer's fruit- and nut-collecting trip to China and Japan from 1916-1918 and the Dorsett-Morse Oriental Agricultural Exploration Expedition to China, Japan, and Korea from 1929-1931 to collect soybean germplasm to support the rise in soybean agriculture in the United States. In 2009, the agricultural output of China was the largest in the world, followed by the European Union, India and the United States, according to the International Monetary Fund (see below). Economists measure the total factor productivity of agriculture and by this measure agriculture in the United States is roughly 2.6 times more productive than it was in 1948. Six countries - the US, Canada, France, Australia, Argentina and Thailand - supply 90% of grain exports. Water deficits, which are already spurring heavy grain imports in numerous middle-sized countries, including Algeria, Iran, Egypt, and Mexico, may soon do the same in larger countries, such as China or India.

Crop production systems

 
Cropping systems vary among farms depending on the available resources and constraints; geography and climate of the farm; government policy; economic, social and political pressures; and the philosophy and culture of the farmer. Shifting cultivation (or slash and burn) is a system in which forests are burnt, releasing nutrients to support cultivation of annual and then perennial crops for a period of several years. Then the plot is left fallow to regrow forest, and the farmer moves to a new plot, returning after many more years (10-20). This fallow period is shortened if population density grows, requiring the input of nutrients (fertilizer or manure) and some manual pest control. Annual cultivation is the next phase of intensity in which there is no fallow period. This requires even greater nutrient and pest control inputs. Further industrialization lead to the use of monocultures, when one cultivar is planted on a large acreage. Because of the low biodiversity, nutrient use is uniform and pests tend to build up, necessitating the greater use of pesticides and fertilizers. Multiple cropping, in which several crops are grown sequentially in one year, and intercropping, when several crops are grown at the same time are other kinds of annual cropping systems known as polycultures. In tropical environments, all of these cropping systems are practiced. In subtropical and arid environments, the timing and extent of agriculture may be limited by rainfall, either not allowing multiple annual crops in a year, or requiring irrigation. In all of these environments perennial crops are grown (coffee, chocolate) and systems are practiced such as agroforestry. In temperate environments, where ecosystems were predominantly grassland or prairie, highly productive annual cropping is the dominant farming system. The last century has seen the intensification, concentration and specialization of agriculture, relying upon new technologies of agricultural chemicals (fertilizers and pesticides), mechanization, and plant breeding (hybrids and GMO's). In the past few decades, a move towards sustainability in agriculture has also developed, integrating ideas of socio-economic justice and conservation of resources and the environment within a farming system.This has led to the development of many responses to the conventional agriculture approach, including organic agriculture, urban agriculture, community supported agriculture, ecological or biological agriculture, integrated farming and holistic management, as well as an increased trend towards agricultural diversification.
  

Crop Statistics

 
Important categories of crops include grains and pseudograins, pulses (legumes), forage, and fruits and vegetables. Specific crops are cultivated in distinct growing regions throughout the world. In millions of metric tons, based on FAO estimate.
 

Livestock Production Systems

 
Animals, including horses, mules, oxen, camels, llamas, alpacas, and dogs, are often used to help cultivate fields, harvest crops, wrangle other animals, and transport farm products to buyers. Animal husbandry not only refers to the breeding and raising of animals for meat or to harvest animal products (like milk, eggs, or wool) on a continual basis, but also to the breeding and care of species for work and companionship. Livestock production systems can be defined based on feed source, as grassland - based, mixed, and landless. Grassland based livestock production relies upon plant material such as shrubland, rangeland, and pastures for feeding ruminant animals. Outside nutrient inputs may be used, however manure is returned directly to the grassland as a major nutrient source. This system is particularly important in areas where crop production is not feasible because of climate or soil, representing 30-40 million pastoralists. Mixed production systems use grassland, fodder crops and grain feed crops as feed for ruminant and monogastic (one stomach; mainly chickens and pigs) livestock. Manure is typically recycled in mixed systems as a fertilizer for crops. Approximately 68% of all agricultural land is permanent pastures used in the production of livestock. Landless systems rely upon feed from outside the farm, representing the de-linking of crop and livestock production found more prevalently in OECD member countries. In the U.S., 70% of the grain grown is fed to animals on feedlots. Synthetic fertilizers are more heavily relied upon for crop production and manure utilization becomes a challenge as well as a source for pollution.

Production practices

 
Tillage is the practice of plowing soil to prepare for planting or for nutrient incorporation or for pest control. Tillage varies in intensity from conventional to no-till. It may improve productivity by warming the soil, incorporating fertilizer and controlling weeds, but also renders soil more prone to erosion, triggers the decomposition of organic matter releasing CO2, and reduces the abundance and diversity of soil organisms.
Pest control includes the management of weeds, insects/mites, and diseases. Chemical (pesticides), biological (biocontrol), mechanical (tillage), and cultural practices are used. Cultural practices include crop rotation, culling, cover crops, intercropping, composting, avoidance, and resistance. Integrated pest management attempts to use all of these methods to keep pest populations below the number which would cause economic loss, and recommends pesticides as a last resort. 
Nutrient management includes both the source of nutrient inputs for crop and livestock production, and the method of utilization of manure produced by livestock. Nutrient inputs can be chemical inorganic fertilizers, manure, green manure, compost and mined minerals. Crop nutrient use may also be managed using cultural techniques such as crop rotation or a fallow period. Manure is used either by holding livestock where the feed crop is growing, such as in managed intensive rotational grazing, or by spreading either dry or liquid formulations of manure on cropland or pastures.
Water management is where rainfall is insufficient or variable, which occurs to some degree in most regions of the world. Some farmers use irrigation to supplement rainfall. In other areas such as the Great Plains in the U.S. and Canada, farmers use a fallow year to conserve soil moisture to use for growing a crop in the following year. Agriculture represents 70% of freshwater use worldwide.

Processing, distribution, and marketing

 
In the United States, food costs attributed to processing, distribution, and marketing have risen while the costs attributed to farming have declined. This is related to the greater efficiency of farming, combined with the increased level of value addition (e.g. more highly processed products) provided by the supply chain. From 1960 to 1980 the farm share was around 40%, but by 1990 it had declined to 30% and by 1998, 22.2%. Market concentration has increased in the sector as well, with the top 20 food manufacturers accounting for half the food-processing value in 1995, over double that produced in 1954. As of 2000 the top six US supermarket groups had 50% of sales compared to 32% in 1992. Although the total effect of the increased market concentration is likely increased efficiency, the changes redistribute economic surplus from producers (farmers) and consumers, and may have negative implications for rural communities.

Crop alteration and biotechnology

 
Crop alteration has been practiced by humankind for thousands of years, since the beginning of civilization. Altering crops through breeding practices changes the genetic make-up of a plant to develop crops with more beneficial characteristics for humans, for example, larger fruits or seeds, drought-tolerance, or resistance to pests. Significant advances in plant breeding ensued after the work of geneticist Gregor Mendel. His work on dominant and recessive alleles gave plant breeders a better understanding of genetics and brought great insights to the techniques utilized by plant breeders. Crop breeding includes techniques such as plant selection with desirable traits, self-pollination and cross-pollination, and molecular techniques that genetically modify the organism. Domestication of plants has, over the centuries increased yield, improved disease resistance and drought tolerance, eased harvest and improved the taste and nutritional value of crop plants. Careful selection and breeding have had enormous effects on the characteristics of crop plants. Plant selection and breeding in the 1920s and 1930s improved pasture (grasses and clover) in New Zealand. Extensive X-ray and ultraviolet induced mutagenesis efforts (i.e. primitive genetic engineering) during the 1950s produced the modern commercial varieties of grains such as wheat, corn (maize) and barley. The Green Revolution popularized the use of conventional hybridization to increase yield many folds by creating "high-yielding varieties". For example, average yields of corn (maize) in the USA have increased from around 2.5 tons per hectare (t/ha) (40 bushels per acre) in 1900 to about 9.4 t/ha (150 bushels per acre) in 2001. Similarly, worldwide average wheat yields have increased from less than 1 t/ha in 1900 to more than 2.5 t/ha in 1990. South American average wheat yields are around 2 t/ha, African under 1 t/ha, Egypt and Arabia up to 3.5 to 4 t/ha with irrigation. In contrast, the average wheat yield in countries such as France is over 8 t/ha. Variations in yields are due mainly to variation in climate, genetics, and the level of intensive farming techniques (use of fertilizers, chemical pest control, growth control to avoid lodging).

0 comments:

Favorite Blogs

  • Ion Negatif (Anion) - *Ion* adalah atom atau sekumpulan atom yang bermuatan listrik. Ion bermuatan negatif, yang menangkap satu atau lebih elektron, disebut *anion*, kare...
  • V/H/S (2012) - *Info:* http://www.imdb.com/title/tt2105044/ *Release Date:* 6 September 2012 *Stars:* Calvin Reeder, Lane Hughes and Adam Wingard *Quality:* BluRay 720p...