"The Blue Marble" photograph of Earth, taken from Apollo 17 |
Geography (from Greek γεωγραφία - geographia, lit. "earth describe-write") is the science that studies the lands, features, inhabitants, and phenomena of Earth. A literal translation would be "to describe or write about the Earth". The first person to use the word "geography" was Eratosthenes (276-194 BC). Four historical traditions in geographical research are the spatial analysis of natural and human phenomena (geography as a study of distribution), area studies (places and regions), study of man-land relationship, and research in earth sciences.
Nonetheless, modern geography is an all-encompassing discipline that
foremost seeks to understand the Earth and all of its human and natural
complexities—not merely where objects are, but how they have changed and
come to be. Geography has been called "the world discipline" and "the
bridge between the human and the physical science". Geography is divided into two main branches: human geography and physical geography.
Introduction
Traditionally, geographers have been viewed the same way as cartographers and people who study place names and numbers. Although many geographers are trained in toponymy and cartology, this is not their main preoccupation. Geographers study the spatial and temporal distribution of phenomena, processes and features as well as the interaction of humans and their environment. As space and place affect a variety of topics such as economics, health, climate, plants and animals; geography is highly interdisciplinary.
“
|
...mere
names of places...are not geography...know by heart a whole gazetteer full of
them would not, in itself, constitute anyone a geographer.
Geography has higher aims than this: it seeks to classify phenomena (alike of
the natural and of the political world, in so far as it treats of the
latter), to compare, to generalize, to ascend from effects to causes, and, in
doing so, to trace out the laws of nature and to mark their influences upon
man. This is 'a description of the world'—that is Geography. In a word
Geography is a Science—a thing not of mere names but of argument and reason,
of cause and effect.
|
”
|
— William Hughes, 1863
|
Geography as a discipline can be split broadly into
two main subsidiary fields: human
geography and physical geography. The former largely focuses
on the built environment and how humans create, view,
manage, and influence space. The latter examines the natural environment and
how organisms,
climate, soil, water, and landforms
produce and interact. The difference between these approaches led to a third
field, environmental geography, which combines
physical and human geography and looks at the interactions between the
environment and humans.
Branches
Physical geography
Physical geography (or physiography) focuses on
geography as an Earth science. It aims to understand the physical
problems and issues of : lithosphere, hydrosphere,
atmosphere, pedosphere,
and global flora
and fauna patterns
(biosphere).
Human geography
Human geography is a branch of geography that focuses on the study of patterns and processes that shape the human society. It encompasses human, political, cultural, social, and economic aspects.
Various approaches to the study of human geography
have also arisen through time and include:
- Behavioral geography
- Feminist geography
- Culture theory
- Geosophy
Integrated geography
Integrated geography is the branch of geography that describes the spatial aspects of interactions between humans and the natural world. It requires an understanding of the traditional aspects of physical and human geography, as well as the ways in which human societies conceptualize the environment.
Integrated geography has emerged as a bridge between
human and physical geography as a result of the increasing specialisation of
the two sub-fields. Furthermore, as human relationship with the environment has
changed as a result of globalization and technological change a new approach was needed
to understand the changing and dynamic relationship. Examples of areas of
research in environmental geography include emergency management, environmental management, sustainability,
and political ecology.
Geomatics
Geomatics is a branch of geography that has emerged since the quantitative revolution in geography in the mid 1950s. Geomatics involves the use of traditional spatial techniques used in cartography and topography and their application to computers. Geomatics has become a widespread field with many other disciplines using techniques such as GIS and remote sensing. Geomatics has also led to a revitalization of some geography departments especially in Northern America where the subject had a declining status during the 1950s.
Geomatics encompasses a large area of fields involved
with spatial analysis, such as Cartography,
Geographic information systems (GIS),
Remote
sensing, and Global positioning systems (GPS).
Regional geography
Regional geography is a branch of geography that studies the regions of all sizes across the Earth. It has a prevailing descriptive character. The main aim is to understand or define the uniqueness or character of a particular region which consists of natural as well as human elements. Attention is paid also to regionalization which covers the proper techniques of space delimitation into regions.
Regional geography is also considered as a certain
approach to study in geographical sciences (similar to quantitative or critical geographies, for more information see History of geography).
Related fields
- Urban planning, regional planning and spatial planning: use the science of geography to assist in determining how to develop (or not develop) the land to meet particular criteria, such as safety, beauty, economic opportunities, the preservation of the built or natural heritage, and so on. The planning of towns, cities, and rural areas may be seen as applied geography.
- Regional science: In the 1950s the regional science movement led by Walter Isard arose, to provide a more quantitative and analytical base to geographical questions, in contrast to the descriptive tendencies of traditional geography programs. Regional science comprises the body of knowledge in which the spatial dimension plays a fundamental role, such as regional economics, resource management, location theory, urban and regional planning, transport and communication, human geography, population distribution, landscape ecology, and environmental quality.
- Interplanetary Sciences: While the discipline of geography is normally concerned with the Earth, the term can also be informally used to describe the study of other worlds, such as the planets of the Solar System and even beyond. The study of systems larger than the earth itself usually forms part of Astronomy or Cosmology. The study of other planets is usually called planetary science. Alternative terms such as Areology (the study of Mars) have been proposed, but are not widely used.
Techniques
As spatial interrelationships are key to this synoptic science, maps are a key tool. Classical cartography has been joined by a more modern approach to geographical analysis, computer-based geographic information systems (GIS).
In their study, geographers use four interrelated
approaches:
- Systematic — Groups geographical knowledge into categories that can be explored globally.
- Regional — Examines systematic relationships between categories for a specific region or location on the planet.
- Descriptive — Simply specifies the locations of features and populations.
- Analytical — Asks why we find features and populations in a specific geographic area.
Cartography
Cartography studies the representation of the Earth's
surface with abstract symbols (map making). Although other subdisciplines of
geography rely on maps for presenting their analyses, the actual making of maps
is abstract enough to be regarded separately. Cartography has grown from a
collection of drafting techniques into an actual science.
Cartographers must learn cognitive psychology and ergonomics to
understand which symbols convey information about the Earth most effectively,
and behavioral
psychology to induce the readers of their maps to act on the information.
They must learn geodesy
and fairly advanced mathematics to understand how the shape of the Earth affects the distortion of
map symbols projected onto a flat surface for viewing. It can be said, without
much controversy, that cartography is the seed from which the larger field of
geography grew. Most geographers will cite a childhood fascination with maps as
an early sign they would end up in the field.
Geographic information systems
Geographic information systems (GIS) deal with the
storage of information about the Earth for automatic retrieval by a computer,
in an accurate manner appropriate to the information's purpose. In addition to
all of the other subdisciplines of geography, GIS specialists must understand computer
science and database
systems. GIS has revolutionized the field of cartography; nearly all mapmaking
is now done with the assistance of some form of GIS software. GIS also refers to the science
of using GIS software and GIS techniques to represent, analyze and predict
spatial relationships. In this context, GIS stands for Geographic Information
Science.
Remote sensing
Remote sensing is the science of obtaining information about Earth features from measurements made at a distance. Remotely sensed data comes in many forms such as satellite imagery, aerial photography and data obtained from hand-held sensors. Geographers increasingly use remotely sensed data to obtain information about the Earth's land surface, ocean and atmosphere because it: a) supplies objective information at a variety of spatial scales (local to global), b) provides a synoptic view of the area of interest, c) allows access to distant and/or inaccessible sites, d) provides spectral information outside the visible portion of the electromagnetic spectrum, and e) facilitates studies of how features/areas change over time. Remotely sensed data may be analyzed either independently of, or in conjunction with, other digital data layers (e.g., in a Geographic Information System).
Quantitative methods
Geostatistics deal with quantitative data analysis, specifically the application of statistical methodology to the exploration of geographic phenomena. Geostatistics is used extensively in a variety of fields including: hydrology, geology, petroleum exploration, weather analysis, urban planning, logistics, and epidemiology. The mathematical basis for geostatistics derives from cluster analysis, linear discriminant analysis and non-parametric statistical tests, and a variety of other subjects. Applications of geostatistics rely heavily on geographic information systems, particularly for the interpolation (estimate) of unmeasured points. Geographers are making notable contributions to the method of quantitative techniques.
Qualitative methods
Geographic qualitative methods, or ethnographical; research techniques, are used by human geographers. In cultural geography there is a tradition of employing qualitative research techniques also used in anthropology and sociology. Participant observation and in-depth interviews provide human geographers with qualitative data.
History
The oldest known world maps date back to ancient Babylon from the 9th century BC. The best known Babylonian world map, however, is the Imago Mundi of 600 BC. The map as reconstructed by Eckhard Unger shows Babylon on the Euphrates, surrounded by a circular landmass showing Assyria, Urartu and several cities, in turn surrounded by a "bitter river" (Oceanus), with seven islands arranged around it so as to form a seven-pointed star. The accompanying text mentions seven outer regions beyond the encircling ocean. The descriptions of five of them have survived. In contrast to the Imago Mundi, an earlier Babylonian world map dating back to the 9th century BC depicted Babylon as being further north from the center of the world, though it is not certain what that center was supposed to represent.
The ideas of Anaximander
(c. 610 BC-c. 545 BC), considered by later Greek writers to be the true founder
of geography, come to us through fragments quoted by his successors. Anaximander
is credited with the invention of the gnomon,the simple
yet efficient Greek instrument that allowed the early measurement of latitude.
Thales, Anaximander is also credited with the prediction of eclipses. The
foundations of geography can be traced to the ancient cultures, such as the
ancient, medieval, and early modern Chinese.
The Greeks,
who were the first to explore geography as both art and science, achieved
this through Cartography, Philosophy,
and Literature, or through Mathematics. There is some debate about who
was the first person to assert that the Earth
is spherical in shape, with the credit going either to Parmenides
or Pythagoras.
Anaxagoras
was able to demonstrate that the profile of the Earth was circular by
explaining eclipses.
However, he still believed that the Earth was a flat disk, as did many of his
contemporaries. One of the first estimates of the radius of the Earth was made
by Eratosthenes.
The first rigorous system of latitude and longitude lines is
credited to Hipparchus.
He employed a sexagesimal system that was derived from Babylonian mathematics. The parallels and
meridians were sub-divided into 360°, with each degree further subdivided 60′ (minutes). To
measure the longitude at different location on Earth, he suggested using
eclipses to determine the relative difference in time. The extensive mapping by
the Romans
as they explored new lands would later provide a high level of information for Ptolemy to
construct detailed atlases.
He extended the work of Hipparchus, using a grid system on his maps and adopting a
length of 56.5 miles for a degree.
From the 3rd century onwards, Chinese
methods of geographical study and writing of geographical literature became
much more complex than what was found in Europe at the time (until the 13th
century). Chinese geographers such as Liu An, Pei Xiu, Jia Dan, Shen Kuo, Fan Chengda,
Zhou
Daguan, and Xu
Xiake wrote important treatises, yet by the 17th century, advanced ideas
and methods of Western-style geography were adopted in China.
During the Middle Ages,
the fall of the Roman empire led to a shift
in the evolution of geography from Europe to the Islamic
world.
Muslim geographers such as Muhammad al-Idrisi produced detailed world maps
(such as Tabula Rogeriana), while other geographers such as
Yaqut
al-Hamawi, Abu Rayhan Biruni, Ibn Battuta
and Ibn
Khaldun provided detailed accounts of their journeys and the geography of
the regions they visited. Turkish geographer, Mahmud al-Kashgari drew a world map on a
linguistic basis, and later so did Piri Reis (Piri
Reis map). Further, Islamic scholars translated and interpreted
the earlier works of the Romans and Greeks
and established the House of Wisdom in Baghdad for this
purpose. Abū Zayd al-Balkhī, originally from Balkh, founded the
"Balkhī school" of terrestrial mapping in Baghdad. Suhrāb,
a late tenth century Muslim geographer, accompanied a book of geographical
coordinates with instructions for making a rectangular world map, with equirectangular projection or
cylindrical equidistant projection. Abu
Rayhan Biruni (976-1048) first described a polar equi-azimuthal equidistant projection
of the celestial sphere. He was regarded as the most
skilled when it came to mapping cities and measuring the distances between
them, which he did for many cities in the Middle East
and Indian subcontinent. He often combined
astronomical readings and mathematical equations, in order to develop methods
of pin-pointing locations by recording degrees of latitude and longitude. He
also developed similar techniques when it came to measuring the heights of mountains,
depths of valleys,
and expanse of the horizon. He also discussed human
geography and the planetary habitability of the Earth. He also
calculated the latitude
of Kath, Khwarezm,
using the maximum altitude of the Sun, and solved a complex geodesic equation
in order to accurately compute the Earth's circumference, which were close to modern values of the
Earth's circumference. His estimate of 6,339.9 km for the Earth
radius was only 16.8 km less than the modern value of 6,356.7 km.
In contrast to his predecessors who measured the Earth's circumference by
sighting the Sun simultaneously from two different locations, al-Biruni
developed a new method of using trigonometric
calculations based on the angle between a plain and mountain top
which yielded more accurate measurements of the Earth's circumference and made
it possible for it to be measured by a single person from a single location.
The European Age
of Discovery during the 16th and 17th centuries, where many new lands were
discovered and accounts by European explorers such as Christopher Columbus, Marco Polo
and James
Cook, revived a desire for both accurate geographic detail, and more solid
theoretical foundations in Europe. The problem facing both explorers and
geographers was finding the latitude and longitude of a geographic location.
The problem of latitude was solved long ago but that of longitude remained;
agreeing on what zero meridian should be was only part of the problem. It was
left to John Harrison to solve it by inventing the
chronometer H-4, in 1760, and later in 1884 for the International Meridian Conference
to adopt by convention the Greenwich meridian as zero meridian.
The 18th and 19th centuries were the times when
geography became recognized as a discrete academic discipline and became part of
a typical university
curriculum in Europe
(especially Paris
and Berlin). The
development of many geographic societies also occurred during the 19th century
with the foundations of the Société de Géographie in 1821, the Royal Geographical Society in 1830, Russian Geographical Society in 1845, American Geographical Society in 1851,
and the National Geographic Society in 1888.
The influence of Immanuel Kant, Alexander von Humboldt, Carl Ritter
and Paul Vidal de la Blache can be seen as a
major turning point in geography from a philosophy to an academic subject.
Over the past two centuries the advancements in
technology such as computers, have led to the development of geomatics and
new practices such as participant observation and geostatistics being
incorporated into geography's portfolio of tools. In the West during the 20th
century, the discipline of geography went through four major phases: environmental determinism, regional geography, the quantitative revolution, and critical geography. The strong interdisciplinary
links between geography and the sciences of geology and botany, as well as economics, sociology and
demographics
have also grown greatly especially as a result of Earth System Science that
seeks to understand the world in a holistic view.
Notable geographers
- Eratosthenes (276BC - 194BC) - calculated the size of the Earth.
- Ptolemy (c.90–c.168) - compiled Greek and Roman knowledge into the book Geographia.
- Al Idrisi (Arabic: أبو عبد الله محمد الإدريسي; Latin: Dreses) (1100–1165/66) - author of Nuzhatul Mushtaq.
- Gerardus Mercator (1512–1594) - innovative cartographer produced the mercator projection
- Alexander von Humboldt (1769–1859) - Considered Father of modern geography, published the Kosmos and founder of the sub-field biogeography.
- Carl Ritter (1779–1859) - Considered Father of modern geography. Occupied the first chair of geography at Berlin University.
- Arnold Henry Guyot (1807–1884) - noted the structure of glaciers and advanced understanding in glacier motion, especially in fast ice flow.
- William Morris Davis (1850–1934) - father of American geography and developer of the cycle of erosion.
- Paul Vidal de la Blache (1845–1918) - founder of the French school of geopolitics and wrote the principles of human geography.
- Sir Halford John Mackinder (1861–1947) - Co-founder of the LSE, Geographical Association
- Carl O. Sauer (1889–1975) - Prominent cultural geographer
- Walter Christaller (1893–1969) - human geographer and inventor of Central place theory.
- Yi-Fu Tuan (1930-) - Chinese-American scholar credited with starting Humanistic Geography as a discipline.
- David Harvey (1935-) - Marxist geographer and author of theories on spatial and urban geography, winner of the Vautrin Lud Prize.
- Edward Soja (born 1941) - Noted for his work on regional development, planning and governance along with coining the terms Synekism and Postmetropolis.
- Michael Frank Goodchild (1944-) - prominent GIS scholar and winner of the RGS founder's medal in 2003.
- Doreen Massey (1944-) - Key scholar in the space and places of globalization and its pluralities, winner of the Vautrin Lud Prize.
- Nigel Thrift (1949-) - originator of non-representational theory.
- Ellen Churchill Semple (1863–1932) - She was America's first influential female geographer.
0 comments:
Post a Comment