Mar 6, 2012

Fabaceae

The Fabaceae or Leguminosae, commonly known as the legume, pea, or bean family, is a large and economically important family of flowering plants. The group is the third largest land plant family, behind only the Orchidaceae and Asteraceae, with 730 genera and over 19,400 species. The largest genera are Astragalus (over 2,400 species), Acacia (over 950 species), Indigofera (around 700 species), Crotalaria (around 700 species), and Mimosa (around 500 species). Plants of this family are found throughout the world, growing in many different environments and climates. A number are important agricultural plants,
including: Glycine max (soybean), Phaseolus (beans), Pisum sativum (pea), Cicer arietinum (chickpeas), Medicago sativa (alfalfa), Arachis hypogaea (peanut), Ceratonia siliqua (carob), and Glycyrrhiza glabra (licorice), which are among the best known members of Fabaceae. A number of species are also weedy pests in different parts of the world, including: Cytisus scoparius (broom), Ulex europaeus (gorse), Pueraria lobata (kudzu), and a number of Lupinus species.

Etymology

 
The name 'Fabaceae' comes from the defunct genus Faba, now included in Vicia. The term "faba" comes from Latin, and appears to simply mean "bean". Leguminosae is an older name still considered valid, and refers to the typical fruit of these plants, which are called legumes.

Distribution

 
The Fabaceae has an essentially worldwide distribution, being found everywhere except Antarctica and the high arctic.

Taxonomy

 
The Fabaceae are placed in the order Fabales according to most taxonomic systems, including the APG III system. The family includes three subfamilies:
  • Mimosoideae: 80 genera and 3,200 species. Mostly tropical and warm temperate Asia and America. Mimosa, Acacia.
  • Caesalpinioideae: 170 genera and 2,000 species, cosmopolitan. Caesalpinia, Senna, Bauhinia, Amherstia.
  • Faboideae: 470 genera and 14,000 species, cosmopolitan. Astragalus, Lupinus.
These three subfamilies have been alternatively treated at the family level, as in the Cronquist and Dahlgren systems. However, this choice has not been supported by late 20th and early 21st century evidence, which has shown the Caesalpinioideae to be paraphyletic and the Fabaceae sensu lato to be monophyletic. While the Mimosoideae and the Faboideae are largely monophyletic, the Caesalpinioideae appear to be paraphyletic and the tribe Cercideae is probably sister to the rest of the family. Moreover, there are a number of genera whose placement into the Caesalpinioideae is not always agreed on (e.g. Dimorphandra).

Description

 
Fabaceae range in habit from giant trees (like Koompassia excelsa) to small annual herbs, with the majority being herbaceous perennials. Plants have indeterminate inflorescences, which are sometimes reduced to a single flower. The flowers have a short hypanthium and a single carpel with a short gynophore, and after fertilization produce fruits that are legumes.
 

Roots

 
Many Fabaceae host bacteria in their roots within structures called root nodules. These bacteria, known as rhizobia, have the ability to take nitrogen gas (N2) out of the air and convert it to a form of nitrogen that is usable to the host plant ( NO3- or NH3 ). This process is called nitrogen fixation. The legume, acting as a host, and rhizobia, acting as a provider of usable nitrate, form a symbiotic relationship.
  

Leaves

 
The leaves are usually alternate and compound. Most often they are even- or odd-pinnately compound (e.g. Caragana and Robinia respectively), often trifoliate (e.g. Trifolium, Medicago) and rarely palmately compound (e.g. Lupinus), in the Mimosoideae and the Caesalpinioideae commonly bipinnate (e.g. Acacia, Mimosa). They always have stipules, which can be leaf-like (e.g. Pisum), thorn-like (e.g. Robinia) or be rather inconspicuous. Leaf margins are entire or, occasionally, serrate. Both the leaves and the leaflets often have wrinkled pulvini to permit nastic movements. In some species, leaflets have evolved into tendrils (e.g. Vicia). Many species have leaves with structures that attract ants that protect the plant from herbivore insects (a form of mutualism). Extrafloral nectaries are common among the Mimosoideae and the Caesalpinioideae, and are also found in some Faboideae (e.g. Vicia sativa). In some Acacia, the modified hollow stipules are inhabited by ants.
  

Flowers


The flowers always have five generally fused sepals and five free petals. They are generally hermaphrodite, and have a short hypanthium, usually cup shaped. There are normally ten stamens and one elongated superior ovary, with a curved style. They are usually arranged in indeterminate inflorescences. Fabaceae are typically entomophilous plants (i.e. they are pollinated by insects), and the flowers are usually showy to attract pollinators. In the Caesalpinioideae, the flowers are often zygomorphic, as in Cercis, or nearly symmetrical with five equal petals in Bauhinia. The upper petal is the innermost one, unlike in the Faboideae. Some species, like some in the genus Senna, have asymmetric flowers, with one of the lower petals larger than the opposing one, and the style bent to one side. The calyx, corolla, or stamens can be showy in this group.
In the Mimosoideae, the flowers are actinomorphic and arranged in globose inflorescences. The petals are small and the stamens, which can be more than just ten, have long coloured filaments, which are the most showy part of the flower. All of the flowers in an inflorescence open at once. In the Faboideae, the flowers are zygomorphic, and have a specialized structure. The upper petal, called the banner, is large and envelops the rest of the petals in bud, often reflexing when the flower blooms. The two adjacent petals, the wings, surround the two bottom petals. The two bottom petals are fused together at the apex (remaining free at the base), forming a boat-like structure called the keel. The stamens are always ten in number, and their filaments can be fused in various configurations, often in a group of nine stamens plus one separate stamen. Various genes in the CYCLOIDEA (CYC)/DICHOTOMA (DICH) family are expressed in the upper (also called dorsal or adaxial) petal; in some species, such as Cadia these genes are expressed throughout the flower, producing a radially symmetrical flower.
  

Fruit

 
The ovary most typically develops into a legume. A legume is a simple dry fruit that usually dehisces (opens along a seam) on two sides. A common name for this type of fruit is a "pod", although that can also be applied to a few other fruit types. A few species have evolved samarae, loments, follicles, indehiscent legumes, achenes, drupes, and berries from the basic legume fruit.

Evolution

 
It has been suggested, based on fossil and phylogenetic evidence, that legumes originally evolved in arid and/or semi-arid regions along the Tethys seaway during the early Tertiary. However, others contend that Africa (or even the Americas) cannot yet be ruled out as the origin of the family. One of the key features of Fabaceae is that some members are able to nodulate. The current hypothesis about the evolution of the genes needed for nodulation is that they were recruited from other pathways after a polyploidy event. Several different pathways have been implicated as donating duplicated genes to the pathways need for nodulation. The main donors to the pathway were the genes associated with the arbuscular mycorrhiza symbiosis genes, the pollen tube formation genes and the haemoglobin genes. One of the main genes shown to be shared between the arbuscular mycorrhiza pathway and the nodulation pathway is SYMRK and it is involved in the plant-bacterial recognition. The pollen tube growth is similar to the infection thread development in that infection threads grow in a polar manner that is similar to a pollen tubes polar growth towards the ovules. Both pathways include the same type of enzymes, pectin-degrading cell wall enzymes. The enzymes needed to reduce nitrogen, nitrogenases, are require a substantial input of ATP but at the same time are sensitive to free oxygen. To meet the requirements of this paradoxical situation, the plants express a type of haemoglobin called leghaemoglobin that is believed to be recruited after a duplication event. These three genetic pathways are believed to be part of a gene duplication event then recruited to work in nodulation. The family has also evolved a unique chemistry. Pterocarpans are a class of molecules (derivatives of isoflavonoids) found only in the Fabaceae.

Uses

 
The history of legumes is tied in closely with that of human civilization, appearing early in Asia, the Americas (the common bean, several varieties) and Europe (broad beans) by 6,000 BCE, where they became a staple, essential for supplementing protein where there was not enough meat. Their ability to fix atmospheric nitrogen reduces fertilizer costs for farmers and gardeners who grow legumes, and means that legumes can be used in a crop rotation to replenish soil that has been depleted of nitrogen. Legume seeds and foliage have a comparatively higher protein content than non-legume materials, due to the additional nitrogen that legumes receive through the process. Some legume species perform hydraulic lift, which makes them ideal for intercropping. Farmed legumes can belong to numerous classes, including forage, grain, blooms, pharmaceutical/industrial, fallow/green manure and timber species, with most commercially farmed species filling two or more roles simultaneously. There are of two broad types of forage legumes. Some, like alfalfa, clover, vetch, and Arachis, are sown in pasture and grazed by livestock. Other forage legumes such as Leucaena or Albizia are woody shrub or tree species that are either broken down by livestock or regularly cut by humans to provide stock feed.
Grain legumes are cultivated for their seeds, and are also called pulses. The seeds are used for human and animal consumption or for the production of oils for industrial uses. Grain legumes include both herbaceous plants like beans, lentils, lupins, peas and peanuts. And trees such as carob, mesquite and tamarind.
Bloom legume species include species such as lupin, which are farmed commercially for their blooms as well as being popular in gardens worldwide. Laburnum, Robinia, Gleditsia, Acacia, Mimosa, and Delonix are ornamental trees and shrubs. Industrial farmed legumes include Indigofera, cultivated for the production of indigo, Acacia, for gum arabic, and Derris, for the insecticide action of rotenone, a compound it produces.
Fallow or green manure legume species are cultivated to be tilled back into the soil to exploit the high nitrogen levels found in most legumes. Numerous legumes are farmed for this purpose, including Leucaena, Cyamopsis and Sesbania. Various legume species are farmed for timber production worldwide, including numerous Acacia species, Dalbergia species, and Castanospermum australe.

0 comments:

Favorite Blogs

  • Ion Negatif (Anion) - *Ion* adalah atom atau sekumpulan atom yang bermuatan listrik. Ion bermuatan negatif, yang menangkap satu atau lebih elektron, disebut *anion*, kare...
  • V/H/S (2012) - *Info:* http://www.imdb.com/title/tt2105044/ *Release Date:* 6 September 2012 *Stars:* Calvin Reeder, Lane Hughes and Adam Wingard *Quality:* BluRay 720p...